Alternating Series
 Error Approximation

Anton 11.7

Recall the alternating harmonic series:

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

We know that this series converges (why?), but what do we not know?

Let's try and estimate the sum.

Estimating the Sum:

Look at partial sums:

$$
\begin{aligned}
& \mathrm{S}_{1}=1 \\
& \mathrm{~S}_{2}=1-1 / 2=0.5 \\
& \mathrm{~S}_{3}=1-1 / 2+1 / 3=0.8333 \\
& \mathrm{~S}_{4}=1-1 / 2+1 / 3-1 / 4=0.5833
\end{aligned}
$$

So far, we can say the actual sum is between what two values?

If we continue:

$$
\begin{aligned}
& S_{7}=1-1 / 2+\cdots+1 / 7=0.7595 \\
& S_{8}=1-1 / 2+1 / 3-\cdots-1 / 8=0.6345
\end{aligned}
$$

So far, we can say the actual sum is between what two values?

In general, the actual sum will always be between S_{n} and S_{n+1} (any consecutive partial sums.)

What is the error for the seventh partial sum?

$$
\begin{aligned}
& \mathrm{S}_{7}=1-1 / 2+\cdots+1 / 7=0.7595 \rightarrow \text { ERRor of } S_{7} \leq|1 / 8| \\
& \mathrm{S}_{8}=1-1 / 2+1 / 3-\cdots-1 / 8=0.6345 \rightarrow \text { ERRor } \leq|1 / 9| \\
& \text { "nat PRUning sun" }
\end{aligned}
$$

In general, if you use S_{n} to approximate the value of the actual sum, S, then the error will be:

$$
\text { error }=\left|S-S_{n}\right| \leq\left|a_{n+1}\right| \mid
$$

The actual value of the sum is $\ln (2)$. Verify that the error of each estimate is less than the appropriate value.

$$
\begin{aligned}
& \mathrm{S}_{7}=0.7595 \Rightarrow \text { error }=|\ln 2-.7595|=0.0664<\left|\mathrm{a}_{8}\right|=1 / 8 \\
& \mathrm{~S}_{8}=0.6345 \Rightarrow \text { error }=|\ln 2-.6345|=0.0586<\left|\mathrm{a}_{9}\right|=1 / 9
\end{aligned}
$$

What partial sum should we use if we want to estimate S to within 0.0001 ?

$$
\mid \text { ERROR } \mid \leq .0001
$$

In other words, if we use S_{n} to approximate S to within 0.0001 , what value of n should we use?

$$
\begin{array}{ll}
\left|a_{n+1}\right| \leq 0.0001 & \\
\frac{1}{n+1} \leq 0.0001=\frac{1}{10,0000^{\circ}} & \begin{array}{l}
\text { Therefore, take } \\
n=9999
\end{array}\left|S-S_{9999}\right| \leq \\
n+1 \geq 10,000 & \\
\begin{array}{l}
\text { Assume we take } \\
n \geq 9,999
\end{array} & \text { the smallest } n .
\end{array}
$$

Given the series: $\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{k}}{k!}$

$$
S_{n}=\frac{-2}{1!}+\frac{2^{2}}{2!}-\frac{2^{3}}{3!}+-\frac{\left.(-1)^{n}\right)^{2}}{n!}=
$$

We showed yesterday that this series converges.
Find the value of n for which the nth partial sum will approximate the sum of the series to within 0.0001 ?

$$
\begin{array}{ll}
\mid \text { errol } \left\lvert\, \leq .0001=\frac{1}{10,000}\right. & \text { Guess + check: } \\
\frac{2^{n+1}}{(n+1)!} \leq \frac{1}{10,000} & \frac{(10+1)!}{2^{(10) 1}} \approx 19,000 \geq 10,000 \\
\frac{(n+1)!}{2^{n+1}} \geq 10,000 & \text { TARE } n=10
\end{array}
$$

Anton 11.7 \#32, 34

$$
\begin{align*}
& \text { (32) } \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} \quad n=5 \\
& S_{5}=\frac{1}{1!-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{5!}} \tag{1}
\end{align*}
$$

ERROR
(34) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(k+1) \ln (k+1)}$

$$
S_{3}=\sqrt{\frac{1}{2 \ln 2}-\frac{1}{3 \ln 3}+\frac{1}{4 \ln 4}}
$$

$$
\mid \text { ereor } \left\lvert\, \leq \frac{1}{5 \ln 5}\right.
$$

Anton 11.7 \#36, 38
(36)

$$
\begin{aligned}
& \sum \frac{(-1)^{k+1}}{k!} \quad|0 R e 0 e|<.0000 \\
& \text { |ERROR } \left\lvert\,<\frac{1}{100,000}\right. \\
& \left|a_{n+1}\right| \leq \frac{1}{100,000} \\
& \frac{1}{(n+1)!} \leq \frac{1}{100,000} \\
& (n \pi)!\geq 100,000 \\
& (8+1)!\geq 100,000 \\
& \operatorname{Tarc}=n=8)
\end{aligned}
$$

Anton 11.7 \#40, 42
(40) $1-2 / 3+4 / q-8 / 27+\cdots$

Geom wh|r $=-2 / 3 \quad|r| c \mid \Rightarrow$ amv.

$$
\sum_{k=1}^{\infty}\left(-\frac{2}{3}\right)^{k-1}
$$

$$
\mid \text { ERROR }\left|\leq\left|a_{11}\right|=\left((-2 / 3)^{10}\right.\right.
$$

$$
=(2 \mid)^{10}
$$

(42)

$$
\begin{aligned}
& \cos \left\lvert\,=\frac{1-\frac{1}{0!}+\frac{1}{2!}-\frac{1}{6!} \cdot}{\sum^{\infty}}+\frac{1}{8!} \cdot \frac{1}{10,000}\right. \\
& \sum_{k=1}^{k+1} \frac{(-1)^{k}}{(2 k-2)!} \\
& \left|a_{n+1}\right| \leq \frac{1}{10,000} \\
& \left|\frac{1}{(2 \ln +1)-2)!}\right| \leq \frac{1}{10,000} n=-4 \\
& (2 n)!\geq 10,000 \\
& (2 \cdot 4) \mid \geq 10,000
\end{aligned}
$$

Homework:

Anton 11.7 \#31-45 odd

